A Tutorial on the
EMME /2 Macro Language

by
Heinz Spiess, EMME /2 Support Center

September 1996

Abstract

One of the most powerful features of the EMME /2 transportation planning sys-
tem is its macro language. Macros are not only an ideal tool for the automation of
complex or repetitive tasks, but, if used judiciously, may also be an invaluable help
when it comes to the standardization, documentation and transferability of a once
developed procedure.

While, even for a novice EMME/2 user, it is quite easy to write and use simple
“save and recall” type macros, mastering the macro language down to its most
intricate details is an art that distinguishes the expert user.

This tutorial is aimed at those EMME /2 users that have already some experience
with macro writing, but would like to improve their skills and learn more about some
of the advanced possibilities the macro language offers. The text is not intended to
replace the standard documentation, rather it aims to complement it, by providing
more detailed explanations and explicit examples on some selected topics.

This text was initially written as course notes for the two-day course on advanced
EMME/2 macro writing, organized by INRO Consultants Inc. in Montreal, Decem-
ber 8 & 9, 1993. The current version contains adaptations to cover new features of
the macro language which are included in EMME/2 Release 8.

Copyright (©1993 — 1996. Heinz Spiess, Aegerten, Switzerland. All rights reserved.

H. Spiess: EMME/2 Macro Tutorial 2

Contents

1 Introduction 3
2 Macro Command Language Summary 4
3 Hierarchical Macro Calls 15
4 Compound Macro Statements 17
5 Text Manipulations 19
6 Controlling the Output with the Register O 21
7 System Parameter Access with Register P 24
8 Using Scalars and Floating Point Registers 26
9 Debugging Macros 29
10 Recommendations for Trouble-Free Macro Writing 31
11 Solutions to the Exercises 33
Copyright:

After having used this tutorial at several occasions as course notes for a 2-day course on “Ad-
vanced EMME /2 Macro Programming”, I have now decided to make it available to all EMME/2
users by posting it on my Web site (http://www.spiess.ch/emme2). This way, all EMME/2
users that are interested in improving their macro writing skills can use this material for self-
study and can test their knowledge of the EMME /2 macro language by solving the exercises at
the end of each section.

Note that this material is only made available for the purpose of the individual use by interested
EMME/2 users. Thus, unless you have obtained my explicit prior permission, you are not
allowed to redistribute this tutorial (but it’s okay to pass a copy to a friend), nor to use it or
parts of it when teaching EMME/2 courses to other EMME /2 users.

This tutorial is also accessible in HTML format at http://wuw.spiess.ch/emme2.

H. Spiess: EMME/2 Macro Tutorial 3

1 Introduction

Macro writing is not a theoretical science, rather it is a “rough” trade which you can
only learn by getting yours hands “dirty”. For this reason, the most important part
this tutorial are the exercises which you will find at the end of the sections 2 — 8. These
exercises were chosen in such a way that they can be solved in a short time (not more
than 15 minutes for most of them), provided that you have understood well the concepts
explained in the corresponding section. Thus, in your very own interest, really try to
solve the exercises yourself. Even if you do already have access to the solutions (which
you normally don’t, see section 11), it is worth while to give it a good first try on your
own.

The following sections are structured in a more or less logical way, starting with a
general overview and then proceeding from the simpler to more complex aspects of
macro programming. The only section with does not really fit into this order is section
9 which explains how to debug macros. As solving the exercises has a lot to do with
macro debugging (at least for me!), it might be worth while to check into section 9 after
having having lived through the pains of debugging the first couple of macros without
using any special debugging commands.

In the next section, we will give a brief overall summary of the macro language. In each
of the remaining sections, a particular aspect of advanced macro programming is looked
at in more detail.

H. Spiess: EMME/2 Macro Tutorial 4

2 Macro Command Language Summary

This section is not intended as a general introduction to EMME/2 macros. Rather, it
was written with the intention of being “a quick refresher” for users that have already
worked with the macro language, but do not have the same degree of familiarity with
all features of the language.

In order to get an idea what the concept of ‘macros’ in the context of EMME/2 is all
about, let us first look at the general framework how the operation of the EMME/2
package is controlled by the user.

The basic method of telling EMME /2 what to do is based on the notion of dialog. The
dialog consists of a sequence of interactions in which the system asks questions, which
in turn are answered by the user. The structure of this dialog is quite simple, as there
are only three well defined types of questions that make up the dialog:

YEs/No QUEsTION: This question is identified by the question mark “?”. Possible
answers are limited to “yes”, “no”, “restart” (back to beginning of current module)
or “quit” (back to main menu).

SELECT QUESTION: A choice of two or more alternatives is presented to the user, each
one preceded by a sequential number. The user answers by choosing one of the
alternatives by entering the corresponding number, or she has the possibility to
“restart” or “quit”.

ENTER QUESTION: This type of question is always used when the user is prompted to
enter one or several textual or numerical data items. The question terminates with
an equal sign “=" as prompt for the user to enter the data. If the “=" appears
on the same line with the question text, the answer is limited to a single line, but
if the “=" appears on a separate line underneath the question text, the answer is
composed of multiple input lines, terminated by an empty line.

When EMME/2 is used interactively, all answers to the questions asked in the dialog are
provided by the user, who is typing them at the keyboard as he goes along. The macro
language provided in EMME/2 is simply a mechanism which generates these answers
automatically, according to a macro script. In other words, whatever a user can do by
operating the EMME/2 dialog interactively can also be implemented in a macro.

Therefore, in its simplest form, a macro consists of just a straight sequence of pre-defined
answers that are passed back, one after the other, to the EMME/2 dialog. However, in
most real-life applications, this would not be good enough, as the answers that need to
be generated by the macro are seldomly exactly the same from one run to the other.
To address this need, the macro language incorporates many features that allow the
implementation of “intelligent” macros, such as:

e Macro parameters can be used to pass arguments to the invoked macro.

e A general substitution mechanism can be used to define context dependent parts
of the answers.

H. Spiess: EMME/2 Macro Tutorial 5

The flow control in the macro can be defined by the use of labels, branches and
conditionals.

A set of integer, floating point and text registers can be operated upon in order
to implement general purpose computations.

External programs and procedures can be bound into a macro by the directly
issuing ezternal commands to the underlying operating system.

Error detection and recovery mechanisms allow trapping of error conditions.

Macros can invoke other macros as sub-procedures, allowing the implementation
of a hierarchical calling structure of arbitrary depth.

The standard dialog output of EMME/2 can be suppressed during the execution
of a macro and the macro can generate its own messages and interact directly with
the user. This allows a macro to implement its own front end.

Macros can directly access the contents of scalars (read-only) and the elements of
the get () /put () stack of the expression evaluator (read/write).

If needed, the macro language provides access to system specific and internal
data bank parameters.

A special single step macro tracing mode helps the macro writer to write and
debug macros more efficiently, or trouble-shoot them in case of problems later on.

In the remaining part of this section, a brief overall summary of the EMME/2 macro
language is given, based on the implementation in EMME/2 Release 8.

Various types of macro registers are available. Some of them are read-only registers
which contain system defined parameters, others are writable by the macro, so that they
take the role of programming variables, which can be used for computations, counters,
etc. All numeric registers are restricted to integer values. Text registers have a maximum
length of 128, but since the maximum macro line length is also limited to 128, it is
normally not possible to attain this maximum. The following table gives an overview of
all available registers.

Macro Registers

register: type:

access:

contents:

b integer

read-only

Batch mode indicator (1l:nteractive, 2:batch). In
batch mode all reports are written to the report file,
all plots are written to the plot file, without corres-
ponding select questions and regardless of the set-
tings of switches 0 and 1. Also, in batch mode,
no change of range is possible after a plot is gen-
erated with modules 2.43, 3.16 or 4.13, the module
returns to the primary select right after the plot is
terminated.

— Rel.8!

— Rel.8!

H. Spiess: EMME/2 Macro Tutorial

Macro Registers

(... continued)

register: type:

access:

contents:

d integer

read-only

Date register. Contains a six digit integer value of
the form YYMMDD, where YY indicates the year
(0-99), MM the month (1-12) and DD the day of the
month (1-31).

e integer

read-only

Number of last error. This register contains the num-
ber of the last error (warning or fatal) which has
occurred, as described in Appendix A of the User’s
Manual. It can be used to take the corrective action
after an abortive error condition has been detected,
or also to determine, if errors occurred while reading
a file using batch input.

f integer

read-only

Scenario status flags for current scenario. This re-
gister contains a bit pattern defined as follows:
bit 0: protected against forced module execution
bit 1: protected against network modifications
bit 2: protected against scenario deletion
bit 5: ready for an auto assignment
bit 6: ready for a transit assignment
bit 10: contains valid auto assignment
bit 11: contains valid transit assignment

1 integer

read-only

Bit pattern containing the current state of switches O-
31. See User's Manual for definition of the individual
switches.

m integer

read-only

Current module number. This register contains the
number of the currently active module as a 3-digit
integer value.

q integer

read-only

Type of current dialog question. This register can be
used to determine the type of question the macro is
currently expected to answer. A value of 1 indicates
a Yes/No question, a value N > 1 indicates a Se-
lect question with /V alternatives, and a value of 0 is
used for Enter questions. A value of -1 indicates an
extra input line generated when bit 6 of the control
register o is set (see section 6 for more information).
The register q is very useful to synchronize a macro
in situations where the dialog varies depending on
the current context (e.g. the dialog of an assign-
ment preparation is slightly different if the scenario
already contains a valid assignment).

S integer

read-only

Number of the current scenario.

H. Spiess: EMME/2 Macro Tutorial

Macro Registers

(... continued)

register:

type:

access:

contents:

v

integer

read-only

Version of current module. This register contains an
integer value which indicates the major release level
(hundreds and up) and the minor update level (last
two digits) of the current module.

X’le

integer

read /write

General purpose integer registers. These three re-
gisters can be used by the macro to hold or compute
any type of numeric information.

integer

write addr.

read value

The p register provides a convenient mechanism
to access system, global and scenario parameters.
When a value is written into the p registers, it is in-
terpreted as the address of one of these parameters.
When, on the other hand, the value of the p register
is read (e.g. in the substitution %p% or in the condi-
tional “?p>0), the value of the corresponding para-
meter is used. See section 7 for further discussion.

integer

read/write

The o register contains a bit pattern, which can be
used to control the various aspects of the dialog out-
put. See section 6 for further discussion.

r1-r250

real

read/write

General purpose single precision floating point re-
gisters. These registers can be used to hold and ma-
nipulate any kind of numeric information. Instead
of specifying the register number explicitly, it is also
possible to use one of the registers x, y or z as in-
dex register, e.g. if y=25, accessing ry is the same as
accessing r25.

gl-g250

real

read /write

These single precision floating point registers
are used to directly access the elements of the
get(O/put() stack. This allows direct two-way
interactions between macros and expression evalu-
ations. Instead of specifying the register number ex-
plicitly, it is also possible to use one of the registers
X, y or z as index register. Since there is only one
get () /put Ostack, the gN registers are global, i.e.
shared by all levels of macro invocation. Note that
these registers are reset to zero each time a new mod-
ule is started.

H. Spiess: EMME/2 Macro Tutorial 8

Macro Registers (... continued)
register: type: access: contents:
t0-t9 text read/write Ten text registers of up to 128 characters are avail-

able. The register tO is special in that it always
corresponds to the current macro calling parameters
%1% %2% %3% Thus, changing the contents of
t0 will always affect the macro parameters, and, vice
versa, modifying the macro parameters (e.g. with
the ~, command) will affect t0. The register t9 is a
global register, i.e. its value is common to all levels
of macro invocation, so that this register can be used
to pass return values from the called macro to the
calling macro.

As explained above, the basic task of a macro is to provide “automatic” answers to
the EMME/2 dialog. Since often these answers depend on the context, an important
component of the macro language is a general substitution mechanism which can be used
to implement such dependencies. Those parts of the answers that are not fixed, but have
to be replaced by context dependent information at the time the macro is executed, are
coded into the macro text as substitution keys. These keys are always surrounded by
% signs (e.g. %1% or %ms77.6%), in order to make them easily recognizable and to
prevent ambiguities with the fixed parts of the macro text. At execution time, all valid
substitution keys are replaced by their corresponding current value.

The following table contains a list of all possible substitutions:

Macro Substitutions

key: substituted by:

%0% Current number of macro parameters. This number is always
between 0 and 9. Since at most 9 parameters are available for
direct substitution, the number does not exceed 9, even if the
number of actual parameters is larger than 9. Often %0% is
used to determine if a macro has been called with the correct
number of parameters.

%1% ... %9% Macro parameters 1 to 9. If a parameter is not defined it is
substituted by an empty string. Note that the text register t0
always corresponds to the current macro parameters.

%reg% Value of register reg.

%reg_ W% Value of integer or floating pointregister reg using a predefined
field width of W characters. If the value does not completely
use the specified field width, it is adjusted to the right.

%freg. D% Value of integer or floating point register freg using D digits
after the decimal point.

H. Spiess: EMME/2 Macro Tutorial

Macro Substitutions

(... continued)

key:

substituted by:

%freqg.D_W %

Value of floating point register freg using D digits after the
decimal point and a predefined field width of W characters.

%u%

User initials, as specified at session start.

%tN.L.%

The first L characters of text register tN.

%tN.-L.%

The contents of the text register tN without the first L
characters.

%msN%
%msN_W%
%msN.D%
%msN.D_W%

The substitution key is replaced by the value of a scalar. N
can be a number between 1 and 99, or alternatively, one of the
letters x, y or z. In the latter case, the scalar is addressed in-
directly by using the scalar number which corresponds to the

current value of the corresponding register. By default, auto-
matic formatting is used, which eliminates redundant trailing
zero decimals.

If needed, the scalar identifier can optionally be followed by
a decimal point and a digit between 0 and 9, and/or an un-
derscore character followed by a field width. In this case, the
format conversion is forced to use the corresponding number of
digits after the decimal point and/or the specified field width.
Note that when D=9, the default automatic format conversion
is used.

%msN.n% Same as above, but the name of the scalar is substituted in-
stead of its value. Any trailing blanks are removed from the 6

character name.

%msN.d% Same as above, but the description of the scalar is substituted
instead of the scalar value or name. Trailing blanks are removed

from the 40 character description.

%% % This sequence is substituted by a single %. This is often useful
for preventing the substitution of a valid substitution key.

Before being executed, each line of the macro file is checked for any of the above substi-
tution keys, and the necessary substitutions are performed. This holds for macro lines
that contain dialog answers, as well as lines containing macro commands. The only
exceptions are the macro address labels, where, for the sake of efficient branching, no
substitution is applied.

All lines in the macro file that do not start with the tilde character (~) are assumed to
be dialog answers. After the applicable substitutions have been made (if any), they are
passed back to the calling module.

Lines in the macro file which start with a tilde character (7), or alternately with a blank

H. Spiess: EMME/2 Macro Tutorial 10

followed by a tilde character, are called macro commands. These commands are used
to control the macro’s operation without necessarily generating a dialog answer. The
following list summarizes the available commands and their syntax.

Macro Commands

command: description:

~/comment Comment line. When a comment is encountered during the
processing of the macro, the comment line is copied to the
screen and the processing continues without further actions. If
the bit 1 of the o-register is set to OFF, the comment command
is copied as a whole to the screen, if set to ON, the leading ~/
characters are omitted, so that the text will not be recognizable
as a macro comment.

~~/comment Comment with no line-feed. This variant of the comment com-
mand is similar to ~/, but the comment is output without fin-
ishing the line with a line-feed character. This allows a macro
to write a line on the screen in several steps, which can be
useful to implement progress reports as the macro executes.

“xprompt string Read line from keyboard. This command will interactively
read one line from the keyboard. An optional text string can be
given after the command, which will be displayed as a prompt
on the same line on which the answer is to be typed in by
the user. If no prompt string is specified, the string “>>” is
used by default. Normally, the line which is entered interact-
ively by the user is passed directly back to the calling module
as answer to the current question. However, if the command
appears to the right of a “set text register” command (e.g.:
“t2="*Enter: Matrix to symmetrize=), the command can be
used to save the text entered by the user into the specified text
register.

~:label Define address label. This command is used to define a branch
target address in the macro. The execution of a branch com-
mand with the same label string (~$label) will cause the macro
to be continued at this address. The label strings of the branch
command must ezactly match the string in the correspond-
ing label definition command, including leading and trailing
blanks! Note that the usual macro substitution (%...%) does
not apply to this command (for efficiency reasons).

H. Spiess: EMME/2 Macro Tutorial

11

Macro Commands

(... continued)

command:

description:

~$label
~$>label

Branch to specified address label. In the simple branch state-
ment (~$), the macro file is rewound to the beginning and the
macro file is scanned until a corresponding ~:label is found.
In the case of the forward branching (~$>), the macro file is
scanned starting from the current position (i.e. is not re-
wound) for the corresponding label. If the target address is
known to be located after the branch command, using the lat-
ter form is much more efficient, especially when dealing with
large macro files. (In compound macro commands ~+...(see
below) an “empty” branch command ~$, i.e. without specify-
ing any label, can be used to branch back to the beginning of
the compound statement.)

%

Discard current first parameter %1% and shift remaining macro
parameters by one position to the left. The second parameter
will be moved into position 1 (%1% « %2%) , the third into
position 2 (%2% <« %3%), and so on. This command is useful
when a macro does the same operation on all specified para-
meters. In this case, the operation is implemented for the first
parameter using %1%, then the parameters are shifted using
the ~% command, and this sequence is repeated as long as there
are still macro parameters remaining.

“reg=value

This class of commands is used to initialize a writable text or
integer register reg to a given value value. reg can be any of of
the integer registers p, o, x, y or z, the floating point registers
rN and gN, or the text registers tO — t9. Since this command
is subject to the usual substitutions before being executed, it
can also be used to copy values from one register to another ,
e.g. the command ~“x=%z% copies the contents of the register z
to register x.

H. Spiess: EMME/2 Macro Tutorial

12

Macro Commands

(... continued)

command:

description:

“reg@value

This class of commands is used to perform an integer arith-
metic operation on a writable numeric register reg, where reg
can be any of of the integer registers p, o, x, y or z, or the float-
ing point registers rN and gN, The operator ® can be any of
+ (addition), - (subtraction), * (multiplication), / (division),
% (remainder of division), and only for integer registers | (bit-
wise OR) or & (bitwise AND). The first operand is always the
current register value, while the second operand is the specified
integer value value. The result of the operation is stored back
into register reg. Since the command is subject to the usual sub-
stitutions before being executed, standard register substitution
can be used for performing operations based on the value of
another register. E.g. the command “z+%y’ adds the contents
of register y to register z (z «— z +).

~?regbvalue
~?1regdbvalue

Conditional. This command is used to test the current contents
of a register reg against a given value value. The following
comparison operators & are available: < (less than), = (equal),
> (greater than). For text registers, these comparisons are done
using the standard ASCII collating sequence. For integer value
registers the bitwise AND operator & is also available to test for
bit masks. In the first form of the command, the line following
the conditional is carried out only if the specified condition is
true (skipped otherwise).

In the second form (~7!), the condition is complemented, i.e.
the following line is executed if the condition is false condition,
and skipped if it is true. Note that the latter form in fact allows
the implementation of the comparisons <, # and >.

“?e
“?le

Test for error condition. This command is used to detect if an
error condition has (or has not) occurred since the last macro
command. The line following the “7e is executed only if an
error condition has occurred, whereas the line following the
~7le is executed only if no error condition has been detected.
These two commands can be used to catch and correct error
conditions which, if not caught in this way, would cause the
macro processing to be interrupted immediately.

H. Spiess: EMME/2 Macro Tutorial 13

Macro Commands (... continued)
command: description:
“<macro pl p2 ... Call macro as a sub-procedure of the current macro. The spe-

cified macro macro is executed with the given parameters.
Upon termination of the lower level macro, the current level
macro continues its execution normally. Each level of macro
invocation sees its own private set of registers. The values of
these private registers are initialized to the current values of
the same registers in the calling macro, but they can be mod-
ified by the called macro at will, without danger of disturbing
the macros at higher levels. Text register t9 and the floating
point registers gIN are exceptions to this rule, in that all levels
of macro invocation share the same (global) value. Thus, these
registers (in particular t9) can be used to pass return values
back to the calling macro.

“lezxternal cmd Command escape to the operating system. The external com-
mand is passed to and executed by the underlying operating
system. This command allows any kind of external programs
and procedures to be integrated into a macro. Since the oper-
ating system depends on the installation, imprudent use of this
command will result in macros that will only run in a particular
operating environment.

+X. XX Compound macro command. This command can be used to
“pack” several dialog answer lines and macro commands into
a single physical line of the macro. The character immediately
following ~+ is used as separator between the partial commands
(here X is used, but any other printable ASCII character can
be used). The compound command is not only useful to group
dialog answers into logical groups (making the macro file con-
siderably shorter and easier to read), but, immediately after a
conditional, it can also be used to make the conditionals act on
an entire group of answers or commands.

Note that, except for label definitions (~:) and other compound
statements (~+), all macro commands can be used as subcom-
mands. The standard substitutions are applied twice, once for
the compound command as a whole, and once at the level of
each subcommand. Thus, care has to be taken if the registers
used in the substitution are also modified within the compound
command.

An empty branch command (~$, no label) within a compound
macro command will cause a branch to the beginning of the
compound command. This type of branching is particularly
efficient, since it does not imply scanning of the macro file to
find the corresponding label.

H. Spiess: EMME/2 Macro Tutorial 14

Since a macro file is a regular ASCII text file, it can be edited using any text editor
that the user is familiar with. Usually, a macro is created by first building an initial
skeleton version of the macro using the “save macro” command ~“>macrofile p1 p2 p3
... (this mode of operation is also referred to as macro learn mode. The basic functions
of the macro are then carried out interactively while EMME/?2 is transcribing all dialog
input into the designated macro file. Note that during this process it is already possible
to define and use macro parameters, as well as any other substitution keys. This is
done by specifying the values of the macro parameters which are to be used while the
macro is being saved on the command line. Then, while interactively creating the macro,
whenever a part of the input is not fixed, but needs to be substituted when the macro
is executed later on, the user enters the substitution keys instead of their actual current
values. The substitution mechanism will now do the necessary replacement even during
the interactive macro definition. In this way, a macro is created which already contains
the proper substitution keys. An empty save command (~> — no file name!) is used to
terminate the saving of a macro in learn mode.

While a macro is created using the “save macro” command, it is also possible to enter
directly some of the more simple macro commands, such as comments (~/. . .), register
assignments and operations, label definitions and read line (“*). Other commands, such
as conditionals, branching and compound commands, are not accepted in the macro
learn mode and will have to be added later by explicit editing of the macro file.

ExERCISE 2.1: Write a macro sequence to answer the dialog generated by the question
“Enter: Matrix(mf)=", which is asked whenever a full matrix is
to be specified in which results are written into. The macro should
work equally well whether the matrix already exists or not. If the mat-
rix exists, the values must not be initialized. Newly created matrices
are to be initialized to zero. Assume that the matrix identifier is stored
in %1%. Matrix name and description are given by the macro context.

ExXERCISE 2.2: When changing to a new release level, it is possible that existing mac-
ros may need to be adapted. How could a macro detect that it is being
used with a higher release level than the one it has been tested with
so far? Write the necessary macro statements to test for this situation
and, if the release level does not match, display an error message and
exit.

H. Spiess: EMME/2 Macro Tutorial 15

3 Hierarchical Macro Calls

For implementing complex procedures, it is sometimes useful to encapsulate individual
subtasks into separate macros, which can be developed and tested independently, and
which might sometimes be used as stand-alone macros for performing just the corres-
ponding subtask. The macro which performs the complete procedure can now perform
these subtasks by using “call macro” commands of the form ~“<subtask p1 p2 p3

When a “call macro” command is encountered, the processing of the current macro is
temporarily suspended and the called macro is executed as a subroutine of the calling
macro. Once the execution of the called macro is terminated, the calling macro resumes
operation at the line following the “call macro” command. The calling of sub-macros is
not restricted to a single level, but it can be applied to as many levels as are required,
thus allowing the implementation of an arbitrary hierarchy of macro calls. Even recursive
invocations of the same macro are allowed.

While the principle of hierarchical macro invocation is straight forward, it is important
to look at what exactly happens to the register and parameter values when one macro
calls another macro. Since each macro uses the registers differently, it is important to
avoid conflicts, e.g. as would result if a called macro would modify register values that
the calling macro still needs for its continuation. Also a calling macro needs to pass
argument values to the called macro, and, upon termination, the latter may need to pass
back return values. In the remaining part of this section, we will look at these questions
in detail.

In the implementation of hierarchical macro calls, registers are implemented in such a
way that each macro is provided with its own, private set of registers. This implies that
a macro does not need to worry about the register usage of the macros that it calls. Even
if an invoked macro uses the same registers for storing its own information, the calling
macro will still find its own register values unchanged upon the return of the called
macro. This way, conflicting register usage between different macros is impossible.

When a macro is called by another macro, its (private) register values are initialized
to the current register values of the calling macro. This allows that parameters can
be passed from the calling to the called macro via the registers (in addition to the
parameters that are specified on the call macro command itself). On the other hand,
this also implies that a macro should never assume that the registers are initialized to
zero (or blank for text registers), but always initialize the used registers explicitly.

When macro needs to pass a return value back to the calling macro, it can do so by
storing the return value into the text register t9. As an exception to the rule explained
above, the t9 register is implemented as a global register. Therefore, all macros share
the same value of t9, and a change to this register made in a lower level macro, is visible
to the macros at the upper levels. If more than one return value are to be passed back,
these can be assembled into the text register (which can hold up to 124 characters) and
be disassembled back into its parts in the calling macro.

H. Spiess: EMME/2 Macro Tutorial 16

ExERCISE 3.1:

Assume that you are writing a macro which needs to invoke exist-
ing macros which you do not know in detail and you suspect that
they might not explicitly initialize the registers before using them,
but (wrongly!) rely on them being already initialized to zero (resp.
blank). Write a general purpose “wrapper” macro which can be used
to invoke such macros.

EXERCISE 3.2:

Write a recursive macro factor to compute the factorial n!, where n
is given as macro parameter and the result is stored in t9.

H. Spiess: EMME/2 Macro Tutorial 17

4 Compound Macro Statements

With compound macro statements, several macro answers and/or commands can be
combined into a single macro line. In the simplest case, this can be useful to reduce the
number of lines in a long macro and to make it more readable by grouping answers that
logically form an entity. The following lines, which are used to specify a matrix which
is written into,

mf4 / specify impedance matrix
yes

upgau

auto impedances scen. %s%

yes

0

can be replaced by the single compound macro command
“+|mf4|ylupqaulauto impedances scen. %sklylO /specify impedance matrix

In this case the character | was used as separator, but any other printable character
could also be used for this purpose, as long as it does not appear anywhere else in the
command.

The compound command is particularly useful after conditionals (*7...). Remember
that the next line following a conditional will be executed or skipped, depending whether
the condition holds or not. By using a compound statement following the conditional,
the condition can be applied to several logical lines. The following example shows a test
which verifies if the macro was called in module 0.00 (the main menu). If not, an error
message is displayed and the macro jumps to the end:

~“?m>000
“+|~/Error: macro must be called from main menu!|~$end

As seen in the example above, a compound command may contain any combination
of macro commands, the only exceptions being other compound commands (“+...)or
macro labels (7:...). Look at the following example, which sets the register x to the
first macro parameter, if the latter has a non-zero value, or to 1 otherwise.

"+ " x=%1%1"7x=0] "x=1

Care must be taken when using substitutions within compound commands. The substi-
tution is done once when the compound command is read as a whole. The maximum
length of 128 characters applies both before and after this substitution. Just before it is
executed, each sub-command is then again checked for substitutions. This is particularly
important if registers are modifed within the compound command. What is the output
of the following sequence?

H. Spiess: EMME/2 Macro Tutorial 18

“+|7x=1|"y=5
T+ x| TxxUyh| T/ x=%%0,

(If you guessed the output is “x=10", you were wrong! Try it out!) If it is necessary
to avoid substitution at the level of the compound statements, use %%%. . . %%% instead
of %...%. This way, in the first substitution, the %%’ are replaced by % and the actual
substitution takes only place before the sub-command is executed.

Another special feature of the compound command is the possibility of branching back
to the beginning of the compound command, in other words, starting it all over. This
is done by executing an empty branch (without any label) as part of the compound
command. This type of branching is particularly efficient, since, in contrast to branching
to a label, it does not imply any file I/O. Can you see what the following “one-liner”
does?

“+:70|6: Tk [q=hhhqhhh] "7 e 787/ [exror Uhhelhlh] :T$

EXERCISE 4.1: Write a small macro which implements an empty loop counting
from 1 to a number specified as the first macro parameter. Com-
pare implementations with and without compound macro statements.

H. Spiess: EMME/2 Macro Tutorial 19

5 Text Manipulations

Ten text registers, each holding up to 124 characters, allow storing of any kind of
text information. The registers t1-t8 are general purpose read/write registers with no
predefined special usage, while text registers tO and t9 have some special properties.

Text registers are written into with the “set register” command (e.g. “~t5=this is a
text”), and are read by means of the text register substitution (e.g. “%t5%”). Special
variants of the substitution keys allow accessing of substrings by limiting the number of
characters or skipping initial characters. Using the same example as above, “/t5.2%,"
will be replaced by the string “th”, and “/%t5.-2%” becomes “is is a text”. Try to
analyze the following sequence (hint: %1% contains a matrix identifier):

~t5=%1%
~£9=%t5.2%
“?t9=md
~t5=mo’%t5.-2%
~“?t9=mo
“t5=md%t5.-2%

As illustrated above, text registers can be compared with another text, using condition-
als. The < and > comparisons are based on the standard ASCII collating sequence.

Register t0 behaves exactly as the other text registers, but its contents is always equi-
valent with the current macro parameters, i.e. the string “%1% %2% %3% ...”. Using
%t07% to manipulate the entire set of macro parameters has also the advantage that even
more than 9 parameters can be handled correctly. Shifting the parameters with the 7%
command will, of course, also modify the contents of t0. Modifying t0, on the other
hand, also implies changing of the macro parameters. In the following sequence, the
macro tests if it has been called without parameters, in which case it “installs” a set of
default parameters:

“7t0=
“tO=ull 1.0 yes
~/Using macro parameters: %1% %2% %3%

This special property of tO can also be used to split a given text into fields or words,
by assigning the text to t0 and accessing the words as %1%, %2%, etc. If this is done, the
“real” macro parameters can be stored away into another register and reinstalled later
on, as shown in the following sequence:

“£9=7%t0%

“tO0="*Enter: First and family name=
“t1=%1%

“£2=0%2%

“t0=%t9%

“/First name: %t1% Family name:7%t2}

H. Spiess: EMME/2 Macro Tutorial 20

The above example also shows how a user can be prompted to enter a text which is
stored in a text register. This is useful in circumstances where the same parameter is
to be used in different places in the macro.

Register t9 is the only global register. This means that its value may be modified by
a macro running at a lower level. Hence, t9 is predestined to be used to pass return
parameters back from a sub-level macro.

By the way, don't forget that text registers can of course also serve to store numerical
values! This is often useful when running short of numerical registers.

EXERCISE 5.1: Write a sequence of macro commands which prompts the user with
the question “Do you really want to proceed?” and proceeds only
if the user enters a “yes”, or any other string starting with the letter
“y”. The macro stops if a “no” (or another string starting with “n”) is
entered. Any other answer will cause the question to be asked again.

ExERCISE 5.2: Write a macro sequence to extract a variable substring from text re-
gister t5, the starting position is contained in the x register and the
length of the substring is given in the y register. The resulting sub-
string is stored in t9.

H. Spiess: EMME/2 Macro Tutorial 21

6 Controlling the Output with the Register O

The output control register o is a bit mapped register, which is used to control the
various aspects of the dialog output during the execution of a macro. The following
table lists the function associated with each bit:

Output Control Register O

bit: value: description:

0 1 Suppress standard dialog output. If bit 0 is ON, the standard dialog
output generated by EMME/2 is not displayed on the screen. Instead,
this output is directed to a scratch file, which is automatically erased
at the end of each module. Thus, activating this bit will “silence” the
macro, so that only output which is generated explicitly by the macro
via macro comments will be displayed on the screen. If bit 0 is OFF
(default), all dialog output is directed to the screen.

1 2 Suppress comment prefix. If bit 1 is OFF (default), macro comments
will be echoed at the screen including the ~/ command prefix, so that
the comment is clearly identifyable as a macro comment. If bit 1 is
ON, the leading ~/ characters are stripped before echoing and only
the comment itself is displayed on the screen.

2 4 Suppress echo of macro input. If bit 2 is OFF (default), the answers
generated by the macro are displayed on the screen (preceded by the
character “<”). In addition, if switch 15, “dialog/macro debug mode”,
is ON, all macro commands are echoed as well on the screen. If bit 2 is
ON, the output of the answers generated by the macro, as well as the
macro commands, are not echoed on the screen as they are executed.

3 8 Macro single step tracing mode. If this bit is ON, the macro single
stepping mode is activated. This mode can be used for macro debug-
ging, as described in section 9.

4 16 Fall back to single step tracing mode. If this bit is set and a fatal
error condition occurs, the macro processing is not terminated (as is
done by default), but the single step mode is entered, so that the user
can analyze the problem and, if necessary, take corrective action. See
section 9 for further information.

5 32 Suppress programmed pauses. After certain operations, EMME/2
waits for a few seconds, in order to give the user some time to read
a displayed message (e.g. after a report has been sent to the print
file). When running a macro, these pauses are not always needed —
sometimes they will even significantly slow down the execution of a
macro. Activating bit 5 will suppress any such programmed pauses
that normally happen during module execution.

H. Spiess: EMME/2 Macro Tutorial 22

Output Control Register O (... continued)

bit: value: description:

6 64 Read an extra input line at programmed pauses (regardless of the
setting of bit 5) and just before leaving a module. While the contents
of the input line itself is ignored, the important aspect here is that
it allows macro commands to be executed at this point. At pauses
(which are usually followed by an erase of the screen), a macro may
implement a user prompt to avoid that the information on the screen
disappears before the user has taken note of it. At the end of a module,
a macro may use this extra input line to do clean-up or post processing
work before module specific information (such as the content of the gV
registers) is lost. For these special input lines, the register q assumes
the value -1.

All following bits are automatically reset after the corresponding
function has been performed.

8 256 Erase screen. When this bit is set, the screen is erased and the cursor
is positioned at the top left corner of the screen.

9 512 Rewind scratch file. If this bit is set, the scratch file used to store
the dialog output of the current module is rewound. This function is
only useful if bit 0 was set (or still is) during the call to the current
module.

10 1024 Backspace scratch file. When this bit is set, the scratch file used to
store the dialog output of the current module is backspaced by one
record. This function is only useful if bit 0 was set (or still is) during
the call to the current module.

11 2048 Read record from scratch file into register t9. When this bit is set,
the next record from the scratch file is read and stored into the text
register t9. From there it can be accessed by the macro in the usual
manner. This function is only useful if bit 0 was set (or still is) during
the call to the current module.

12 4096 Close and discard current scratch file. If this bit is set, the current
scratch file is closed and deleted. If bit 0 is still ON, a new scratch
file will be opened automatically as soon as the next dialog output
is generated. Activating this bit might be needed in macros which
generate a great quantity of dialog output in a single module (loops!),
in order to avoid disk space problems.

In order to set up a macro to be “quiet”, i.e. not to display the dialog that the macro
generates while running, the o register is usually set to the value 7 (=1+2+4). This
corresponds to setting the bits 0, 1 and 2 to ON, implying that neither dialog output
nor input is displayed and that macro comments are echoed without the leading “~/".

Since it becomes difficult to debug a macro once the dialog is hidden this way, it is

H. Spiess: EMME/2 Macro Tutorial 23

recommended to test switch 15 before setting the o register. This way, if ever needed,
the macro can be made “noisy” by simply issuing the command on=15 at the main menu,
without any need to edit the macro. This could be done by inserting the following
sequence at the beginning of a macro:

~?1i&32768 / if switch 15 (dialog/macro echo mode) is OFF
“o=7 / set o-register to hide all dialog

If the macro should start with a screen erase (similar to an EMME /2 module), it suffices
to set bit 8 of the o register. In the above example this could be done by replacing the
value 7 by 263 (=7+256). If the screen is to be erased at some place within the macro,
this can be done with the bitwise OR command “~o0|256”, which does not affect the
setting of any other bits.

The bits 9-12 allow a macro to access the dialog that was sent to the scratch file instead
of the screen. This way, a macro get the possibility to interpret context dependent
information that is not available in any register, but appears somewhere in the dialog
output.

EXERCISE 6.1: Write a macro which exports all predefined windows into an external
file, which then can be used as a macro in another data bank to rein-
stall the same set of predefined windows.

H. Spiess: EMME/2 Macro Tutorial 24

7 System Parameter Access with Register P

The macro language provides read-only registers for the most important system para-
meters, such as current module, current scenario or the current date. However, when
writing complex macros, it is often necessary to access all kind of other data bank or
system parameters. The special register p is available for accessing such parameters.
For this purpose, each available parameter is assigned an address, which is to be used
to access this parameter. When the p register is set to such an address, the value of the
corresponding parameter is used when the p register is used in substitutions or condition-
als. Thus, the p register is different from the other registers, since it behaves differently
for read and write accesses: parameter addresses are written to the p register, and
parameter values are read from it.

The classes of parameters that are accessible via the p register are: global data bank
parameters, scenario numbers, scenario parameters, and other system parameters. The
following table lists the corresponding addresses:

System Parameter Register P

address: contents:

1-80 Global parameters, as described in Appendix C.1 of EMME/2 User's
Manual.

101-200 External scenario numbers (0: scenario slot empty, -1: scenario slot not
available in data bank)

1001-1280 Scenario parameters 1-280 of the current scenario, as described in Ap-
pendix C.1 of EMME/2 User’s Manual.

2000-2011 System parameters, as defined below
2001 Software (1: EMME/2, 2: STAN)

2002 Licence number

2003 Licence size (1-12)

2004 Type of operating system (1: UNIX, 2: DOS, 3: VMS)

2005 CPU time used since creation of the data bank (in 1/10 secs)
2006 Current year (0-99)

2007 Current month (1-12)

2008 Current day of month (1-31)

2009 Current hour (0-23)

2010 Current minute (0-59)

2011 Current second (0-59)

H. Spiess: EMME/2 Macro Tutorial 25

As an example, look at the following example sequence, which computes the number of
entries that are still available in the turn table of the current scenario. This number is
computed as the difference of the global parameter 55 (MTURN, maximum turn table
size in data bank) and the scenario parameter 4 (NTURN, current size of turn table),
as follows:

“p=55 / global parameter MTURN, maximum size of turn table
“x=}ph / X=MTURN

“p=1004 / scenario parameter NTURN, current size of turn table
“x=hph / X=X-NTURN

~/ Number of available turn table entries in scenario %s% is %x%.

Note that there is a potential synchronization problem when accessing the system para-
meters 2006 — 2011 for assembling a string with the current time. Imagine e.g. that
this operation was started just a few milliseconds before midnight, so that instead of
92-05-16 23:59:59 one could obtain the string 92-05-16 00:00:00, which would clearly
be wrong. To avoid such problems, the internal time values are replaced only if either
more than 2 seconds passed since last time parameter access, or the last time parameter
accessed was of higher or equal index. With these rules, no synchronization problems
occur when accessing time parameters sequentially in the order given above.

EXERCISE 7.1: Write a macro which scans the data bank for scenarios which are
prepared for assignment, but not yet assigned, and perform the cor-
responding assignments.

EXERCISE 7.2: Write a “wrapper” macro cputime which calls the macro given as
parameter and, after completion, reports the number of cpu seconds
that were used during the execution of that macro.

EXERCISE 7.3: Write a macro filecopy which copies the file given as the first para-
meter into the file given as second parameter. The macro should work
equally well on DOS, UNIX and VAX/VMS systems.

H. Spiess: EMME/2 Macro Tutorial 26

8 Using Scalars and Floating Point Registers

Scalars have a wide-spread use throughout the entire EMME/2 system. They are ac-
cessible in the following ways:

Matrices: Scalar matrices are fully integrated into all tools of the matrix editor.

Functions and expressions: Scalars are accessible via the intrinsic function ms (), they
can be used as “programmable” constants or to implement lookup tables.

Network: Scalars can be accessed in network calculations by means of the ms () intrinsic.
Summary results of network calculations can be saved into scalars, including sum,
average, minimum /maximum value and element, number of elements processed
and number of attribute values changed.

Macros: Scalar substitution %ms...% can be used to insert scalar values, names and
descriptions directly into dialog input and macro commands.

These possibilities make scalars the ideal vehicle to carry numeric values from one part
of the system to another. Since, besides its numeric value, each scalar also has a name,
description and a timestamp, they are also convenient places to store numeric results
computed with a macro, along with their description.

By convention, the high-numbered macros ms90-ms99 should be reserved for storing
temporary values. This way, macros can freely use scalars in this range, without risking
any conflict with application specific permanent scalars.

Before Release 8, the macro registers were limited to integer and text values, so that the

explicit manipulation of scalars was the only means to perform floating computations

within a macro. With Release 8, a set of 250 single precision floating point registers — Rel.8!
named r1 to r250 is introduced. These registers can be used in the same way as integer
registers: they can be set to a value ("r15=3.14159), operated upon (“r15+0.5), tested

("7rx<0) and substituted (%r15.5_10%). With these floating point registers, many tasks

which before had to be implemented using scalars just to do floating point operations

can now be done more easily and efficiently.

In all commands that operate on floating point registers, the register number can either
be specified directly (r1 ...r250) or by using the current contents of one of the integer
registers x, y or z (rx, ry, rz). With this indirection, a range of floating point registers
can also be used as a vector which can easily be operated upon within index loops.

When working with floating point registers it is to be noted that, when switching from
one module to the next or when invoking a lower level macro as a subroutine, their values
are preserved by writing them (except those that are zero) to the external file usemacro.
Even though this writing is done with a very high precision using the exponential format
e16.8, the writing and reading may sometimes cause very tiny rounding errors, since
there is no exact equivalence between the binary and decimal representation of fractional
numbers. This does not apply to integer numbers up to 4'194'303 — these can be safely
stored in floating point registers without any danger of rounding effects.

H. Spiess: EMME/2 Macro Tutorial 27

Another new enhancement that is introduced with Release 8 integrates the get () /put ()
stack of the EMME/2 expression evaluator into the macro language. The get () /put ()
stack are 250 words of auxiliary memory which are accessed from within expressions
(e.g. functions, calculators) with the following intrinsic functions:

put(z): The value of the the argument expression z is pushed on the stack and the
stack pointer is incremented. The return value of the function is z.

get(2): The value of the :-th element of the stack is returned. If 7 is not an integer, the
truncated value is used as index.

puti(z): The stack pointer is set the ¢, so that the next call to put () will write to the
1-th element of the stack. If ¢ is not an integer, the truncated value is used as
index.

Note that the get () /put () stack is module specific, i.e. its values are set to zero when
entering a new module and the final values are lost when the module is left.

Starting with Release 8 , the contents of the get () /put() stack can also be accessed
—for both reading and writing— directly from macros. This is done using the special
floating point registers gN. These use exactly the same syntax as the standard floating
point registers r N, but behave somewhate differently:

e Any change in the gN register will immadiately change the return value of the
corresponding calls to get ().

e Any call to put () will immediately change the value of the corresponding register
gN.

o At the start of a new module, the registers g/N are initialized to zero.

e When a module is terminated the values of the gV registers are lost. (If needeed,
bit 6 of the control register o can be used to “collect” stack values at the end of a
module.)

e The rN registers are global registers, i.e. the same values are visible from all
levels of macro invocation. Hence, it is possible to use these registers to pass
return values from a lower level macro back to the calling macro (in this case, of
course, it is your responsibility to make sure that there are no conflicts with any
get () /put () calls used in the same module).

The gN registers allow an easy implementation of many tasks that, before, were not
possible or very cumbersome to carry out, such as e.g. installing lookup tables for, or
collecting side results of network and matrix calculations.

— Rel. 8.’

— Rel.8!

H. Spiess: EMME/2 Macro Tutorial 28

EXERCISE 8.1:

Write a macro plotline which takes a transit line name as parameter
and determines the smallest network window covering the entire itin-
erary and then generates a plot with the transit volumes of this line.

EXERCISE 8.2:

Write a macro speedist which generates as output a table showing
the distribution of the number of car kilometers traveled per speed
intervals of 5 km /h.

EXERCISE 8.3:

Write a macro mlookup which contains the values of a lookup table
(fx,k=1,...,K) and performs a “staircase lookup” on a given mat-
rix u,, to obtain the result r,, = fi, where k is chosen such that
(k—1)0 < up, <= ko, where § is an given interval size. Optional
variant: Replace the staircase function by a continuous piecewise
linear function.

H. Spiess: EMME/2 Macro Tutorial 29

9 Debugging Macros

Even when writing a very simple macro, never expect it to run flawlessly on the first
try. Once the first version of the macro is written, the fun part of testing and debugging
starts...

Up to the Release 6, no special debugging tools were available, except for switch 15. This
switch, if set to ON, will cause all macro commands to be displayed on the screen while
they are being executed. So, with a bit of experience and patience, switch 15 allows a
macro writer to locate about any type of problem. But the really frustrating part of
this way of macro debugging is that, as soon as an error occurs, the macro processing
terminates immediately. This means that the macro has to be started over and over
again, until all errors are found and eliminated.

With Release 7, a macro debugging tool, called single step tracing mode, has been
incorporated into the macro language. This new feature offers the following possibilities:

e Execute macros in a step-by-step mode, prompting the user explicitly before each
macro command is executed.

Allow inspection of all registers and change their values if needed.

List the contents of the macro.

Inspect current position at all macro call level.

Take corrective ad-hoc measures, such as skipping, inserting or replacing lines.

Allows error recovery by falling back to single stepping mode in case of error or
interruption.

The single stepping mode is activated by the setting of bit 3 of the output control register
o. Once activated, it will take effect at the level of each macro line which is echoed on
the dialog output with “<....”. Which lines exactly are echoed this way is controlled
by the setting of switch 15, and bits 1 and 2 of the o register.

Each macro line that is subject to single step tracing (i.e. which is displayed on the dialog
in the “<....” format) will be displayed as usual, followed by the macro corresponding
line number surrounded by tilde characters. Line and character position is listed for a
macro command which is part of a compound command. The user is now expected to
enter a carriage return to indicate that he is now ready to process this line.

The following example, which was taken from a macro that sets the module parameters
of a graphic module, illustrates the single stepping mode:

Enter: Width,height of nodes without node number

(4.00, 4.00)=<4.0,4.0 "L15" <- CR
Enter: Width,height of nodes with node numbers
(32.00, 12.00)= < 32.0,12.0 "L16:4~ <- CR

Enter: Offset to the right for links (1.80)= < 3.0 "L16:15~ <- CR

H. Spiess: EMME/2 Macro Tutorial 30

At each ~ prompt of the single step mode, the user has the possibility to enter either a
carriage return or one of the following debugging commands:

Debugging Commands

command: action:

* Display the current values all integer registers.

t* Display the current values all text registers.

r* Display the values all non-zero general purpose floating point registers.
g* Display the current values all non-zero elements of the get()/put()

stack, i.e. the gN registers.

reg Display current value of the given register reg.

reg=value Set register reg to the specified value.

e Continue macro - leave single stepping mode. Bit 3 of the o register is
reset and bit 4 (fall-back) is set, so that the single step mode is reactivated
again in case of error or interrupt.

01 List current context in the macro (from 3 lines before to 3 lines after the
current line).

1N List N lines of the macro starting with the current line.

:1-N List N lines of the macro ending with the current line.

p Display macro position at all macro call levels.

:rtext Replace the current line by tezt before executing it.

'S Skip the current line (do not execute it) and proceed to the next line.
(Not valid in compound commands.)

itext Insert and execute the line defined by tezt before executing the current
line. (Not valid in compound commands.)

X Exit macro processing.

? Display the list of available debugging commands.

Any text that follows a debugging command is subject to the usual macro substitution
rules, i.e. %...% sequences will be substituted as if they would appear in the macro
itself.

As indicated above, bit 4 of the output control register o activates the fall-back mode. In
this mode of operation, the macro executes normally until an error condition or a user
interrupt is detected. By default these events would terminate the macro processing
immediately with the messages >ERROR...> or >INTERRUPT>. In fall-back mode the
macro enters single stepping mode, so that the problem can immediately be analyzed
and, if possible, corrected.

H. Spiess: EMME/2 Macro Tutorial 31

10 Recommendations for Trouble-Free Macro Writing

We conclude this tutorial with a list of recommendations which should help to write
robust and transportable macros that will perform well in different applications, and
—Ilast but not least!— will avoid unnecessary problems when switching to new releases:

e When a macro is leaving a module, always use “quit” at the level of the primary
select. Do not use the explicit “n=end” option, since this would require explicit
modification if in a later release new options are added to the module.

e Do not assume that all users and all applications use the same switch and module
parameter settings as you do. Whenever possible, write macros to be independent
of particular switch or module parameter settings. Often this can be done very
easily by inserting conditionals which test the switch setting directly (“7i&...) or
that verify the presence of an optional question (~7q. . .).

e When a macro needs to modify switches, make sure that they are set back to their
initial value at the end of the macro. Saving the initial state of all switches is done
easily by saving the value of the switch register i at the beginning of the macro.
This allows, at the end of the macro, to reset those switches that were changed in
the macro to their initial state.

e It is a good practice that macros which generate reports, plots and batch output
files use the flexible file naming commands reports=, plots= and batchout= to
define their own file names. However, if these commands are used it is important
to reset the modified file names to the setting that were active before the macro
was started. This can be achieved by using the commands reports=", plots="
and/or batchout=", which will set the file names back to the names that were
active before the last change.

e External commands (~!...) are executed by the operating system of the host
computer. Such commands may render the macro incompatible with different
host computers. If a macro contains such dependencies, this should be clearly
documented. Better even, the macro should test for the correct operating system
(using system parameter 2004), or, if possible, adapt itself to the various host
types by providing several versions of the ~! command, each preceded by the
corresponding conditional.

e It is recommended that macros which modify the data bank should create a log
book comment when they are started. If this comment contains the macro name
and the run time parameters (e.g. c=’mymacro %1% %2% %3%’), the log book can
later be consulted to reconstruct the history of the data bank. For macros that
run for a long time and have a high risk of being interrupted prematurely, it is
sometimes even advisable to generate a log book entry at the beginning and one
after normal completion, so that runs that did not terminate normally will be
recognizable as such in the log book.

e If a macro requires a certain number of parameters, a test should be done at the
beginning to verify if enough parameters are provided. If not, a message should

H. Spiess: EMME/2 Macro Tutorial 32

be displayed which shows a summary of the usage of the macro. This way, a
user which is not sure about the calling convention of a macro, can always call it
without parameters to obtain instructions on the calling sequence.

e Many macros need to store auxiliary data vectors that are just needed during the
macro run, but do not have to be preserved. If these vectors are limited to use
within the network calculator, the best choice is to use the temporary network
attributes tmpzy, as these are always available and will be deleted automatically
when module 2.41 is left. If the auxiliary vectors are used outside the network
calculator, they should either be specifyable as macro parameter, or be stored in
extra attributes named Otmp.. that are created at the beginning and deleted at
the end of the macro.

e Scalars in the range ms90 — ms99 should stay reserved for use as scratch pads. By
observing this rule, macros which need scalars to hold temporary data, can always
use these scalars without any danger that this would distroy any important data.

e When using conditionals on floating point registers, be very careful with testing
for equality. Unless the contents of the floating point register is known to be a true
integer (i.e. stored there as integer value or obtained by operations involving only
integer values) in the range 1 to 4194303, rounding errors may occur that make
the use of strict equality comparisons unsafe.

e Switch 15 is a convenient way of activating the output of internal debugging in-
formation. This switch can safely be assumed OFF during normal operation. If
the macro finds it to be ON, this could be used to set the output control register
to echo dialog output and input and activate the fall-back to single step mode. If
the macro creates auxiliary data vectors which are usually deleted at the end, it
is sometimes useful not to delete them when switch 15 is ON, to allow analyzing
them post-mortem.

H. Spiess: EMME/2 Macro Tutorial 33

11 Solutions to the Exercises

This section normally contains the solution macros for all exercises in the previous
sections.

But as said in the introduction, the pupose of the exercises is of course to solve them
yourself. Therefore, handing out the solutions here along with the tutorial would (for
all but the most disciplined among us!) spoil all the pains and pleasures of working out
the solutions yourself.

For this reason, when teaching this course, I only hand out the solutions at the very
end of the course. If you downloaded this tutorial from my Web site and have worked
through it on your own, you can send me an email at heinz@spiess.ch or mail me a
diskette in which you include your solutions (or however far you got with them). I will
look at them and then send you back my set of solutions.

Of course, also if you have any question regarding this tutorial in general or some of the
exercises in particular, please feel free to contact me and I will try my best to reply to
your queries. But note that this is not part of my official EMME/2 support activities
which I do on behalf of INRO. Therefore, please be patient if I do not reply to you with
the same fast turn around time that you are used to from sending me EMME /2 software
support requests.

Heinz Spiess, EMME /2 Support Center
Address: Haldenstrasse 16
CH-2558 Aegerten
Switzerland

Phone: ++41 32 53 20 57 (number will change
to ++41 82 878 20 57 on Nov 9, 1996!)

Fax: ++41 32 53 57 86 (number will change
to ++41 32 873 57 86 on Nov 9, 1996!)
Email: heinz@spiess.ch

WWW: http://www.spiess.ch/emme?2

H. Spiess: EMME/2 Macro Tutorial 34

Exercise 2.1: (File: resmat.mac)
01: %1% / matrix identifier (Enter: Matrix (mf)=)

02: y / initialize matrix if it doesn’t exist, change header if it does
03: upqau / matrix name (Enter: Name (6 char)=)

04: ’auto impedance for scenario %s’%’ / (Enter: Matrix description=)

05: “x=%q% / preserve current value of q (why?? this is the trickiest part!)
06: "7x=0 / matrix is being created

07: 0 / default value (Enter: Default value=)

08: "7x=1 / matrix exists already

09: no / don’t initialize values (Initialize data?)

Exercise 2.2: (File: testrel.mac)
01: ~x=Yv’ / compute major release level of current module

02: "x/100

03: "7x=7 / test if software is on release level 7

04: “$release_is_okay

05: “/ This macro is written for release 7, you are using release 7%x%!

06: ~/ Ask the author of this macro to provide you with an updated version.

07: ~“$end_of_macro

08: “:release_is_okay

Exercise 3.1: (File: inireg.mac)
01: */ inireg - wrapper to initialize all registers before calling a macro

02: “+|"x=0|"y=0|"2=0|"p=0|~0=0|"t1=]|"t2=|"t3=|"t4=|"tb=|"t6=|"t7=| "t8=|"t9=
03: "?v>800 / initialize floating point registers for Release 8 and later

04: “+|"x+1| rx=0|"?x<250|"$|"x=0 / fast loop over all 250 rN registers

05: ~<%t0%

Exercise 3.2: (File: factor.mac)
01: ~x=%1% / compute factorial %1%!

02: "t9=1

03: ~“7x<2 / result is trivial for O and 1

04: “$return

05: "x-1 / compute factorial (%1%-1)! by recursion

06: ~<factor %x%

07: ~x=%t9% / result value is in t9

08: “x*%1% A AVARE I AVAICAYAS DN

09: ~t9=Vx%

10: ":return

11: 7/ KA =%t9%

H. Spiess: EMME/2 Macro Tutorial 35

Exercise 4.1a: (File: slowloop.mac)
01: "x=1

02: “/starting loop from 1 to %1)% (using label branching)

03: ~:1loop

04: "x+1

05: ~7!x>%1%

06: ~“$loop

07: “/loop from 1 to %1% done!

Exercise 4.1b: (File: fastloop.mac)

01: "x=1

02: “/starting loop from 1 to %1} (using compound command)
03: "+ x+1|"?!x>%1%1"$

04: “/loop from 1 to %1% done!

Exercise 5.1: (File: confirm.mac)

01: “:confirm
02: "t9="*Do you really want to proceed?
03: “t9=Yt9.1%

04: “7t9=n
05: “$end_of_macro
06: "?7!t9=y

07: “$confirm

Exercise 5.2: (File: substr.mac)

01: ~/ Construct variable substring of t5 starting at position x with length y.

02: "x-1 / number of characters to be skipped from the beginning
03: “+|t9=%A%t5 . ~%hxhhhh| ~tO=U%%t9 . hyhhhh
04: “x+1 / restore initial value of x, in case it is still needed

05: ~/ substr(t5,%x%,%y%h)="%to%"

Exercise 6.1: (File: getwindw.mac)

01: “o=7

02: 7/#xkxkkkkskrkkkkk getwindw (DOS and UNIX only) #skskkskkskskokskkokskskkk

03: ~/Saving the following predefined windows into file putwindw.mac:

04: "+[2.13|1|n|"?g=1|nlalllyl4 / get to window dialog in 2.13

05: 7 / list predefined windows to scratch file

H. Spiess: EMME/2 Macro Tutorial 36

06: “0|1024 / backspace over ‘Enter: Window (a-z)=’

07: “techo “/predefined windows saved by getwindw on %d) >putwindw.mac

08: ~:loop

09: “0l1024 / backspace over last line

10: “0|3072 / backspace and read a line

11: 77¢9> W / is it the table header?(’ WINDOW....’)

12: “$done

13: 7/ %t9%

14: ~lecho %t9% >>putwindw.mac

15: “$loop

16: “:done

17: / provoke error to get back to select

18: “7e / catch error condition

19: q / quit module

20: “o0=6 / Reactivate dialog output

21: / redisplay ‘Enter: Next module=’
Exercise 7.1: (File: assign.mac)
01: “o=7 / ASSIGN: perform all prepared auto and transit assignments
02: ~7i&32768 / if switch 15 (dialog/macro echo mode) is ON

03: "0=8 / enable dialog output and set single stepping mode

04: ~/ Scan all scenarios and perform any assignment which has been prepared
05: reports=’assign.rep’ / define file name for reports

06: “t1=Ysi / store current scenario in ti

07: “y=0 / initialize counter for auto assignments

08: "z=0 / initialize counter for transit assignments

09: "p=100 / set up counter x for stepping through scenario numbers

10: ":next_scenario

11: “p+1 / increment scenario counter

12: “7p=0 / zero scenario number - scenario is not used

13: “$next_scenario

14: “7p<0 / negative value indicates that all scenarios have been scanned
15: “$done

16: s=lph / scenario exists - define it as current

17: ~7£&32 / scenario ready for auto assignment? If yes, assign it

18: "+|5.21|7/ Auto assignment scenario %s’ (do not interrupt!)|~?7q=2[2]"y+1
19: ~7£&64 / scenario ready for transit assignment? If yes, assign it
20: “+|5.31|"/ Transit assignment scenario %s) (do not interrupt!)|~?q=2|2|"z+1
21: “$next_scenario

22: “:done

23: s=Y%t1l% / reset scenario to what it was initially

24: reports=’"’/set report file back to original setting

25: 7/ ASSIGN terminated normally after %y% auto and %z} transit assignments.
26: “0=6 / reset dialog output

27: / display ‘Enter: Next module=’

Exercise 7.2: (File: cputime.mac)

H. Spiess: EMME/2 Macro Tutorial 37

01: "p=2005 / cputime - wrapper macro to report CPU time used by any macro
02: “x=-Y%pkh / usage: ~<cputime macroname parl par2 ...

03: ~<%t0%

04: ~“x+}ph / compute difference of CPU time

05: “y=kx%k / CPU times are stored in 1/10th secs

06: “y%10 / store fractional part in y

07: "x/10 / store integer part in x

08: “/ CPU time used by macro %1%: %x%.hyh secs

Exercise 7.3: (File: filecopy.mac)
01: ~x=%0% / test if exactly two parameters are specified

02: "?1x=2

03: “+|7/ usage: filecopy <fromfile> <tofile>| $end

04: ~p=2004

05: ~7p=1 / UNIX

06: “!cp Wi% 2%

07: ~7p=2 / DOS

08: “!copy %1% h2%

09: "7p=3 / VAX/VMS

10: ~!'COPY/LOG %1% %2%

11: ":end

Exercise 8.1a: (File: plotline.mac)
01: “o=7

02: ~/ Plotline: Plot the transit volumes of the lines given in parameters

03: °/ by using an ‘‘optimal’’ window which is computed first
04: ~/ (using scalars)

05: ~/ ... computing optimal window for transit line %1%...

06: ~?7i&32768 / if switch 15 (dialog/macro echo mode) is ON

07: "o=8 / enable dialog output and set single stepping mode

08: 2.41 / use network calculator to compute min/max coordinates

09: 1 / network calculation for x coordinate

10: n / no results saved

11: ’xi+0*hdw’ / x-coordinate of i-node of segment (note trick with Oxhdw!)

12:

13: %1% / selected line(s) only

14:

15: all / all links

16: 5 / save summary results in scalars
17: 2 / minimum

18: ~7q>0 / no lines selected? (invalid input)
19: “+|~/ Line %1% does not exist!|ql|~$end

20: ms96

21: lowX / scalar name and description

22: ’lower X coordinate for line %1%’
23: / don’t save line index

H. Spiess: EMME/2 Macro Tutorial

24 :
25:
26:
27
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44
45:
46:
a7
48:
49:
50:
51:
52:
63:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:

/ don’t save i-node
/ don’t save j-node
3 / maximum
ms97
uppX / scalar name and description
’upper X coordinate for line %1%’
/ don’t save line index
/ don’t save i-node
/ don’t save j-node
r / back to primary select
1 / network calculation for y coordinate
n / no results saved
’yi+0*hdw’ / y-coordinate of i-node of segment (note trick with O%hdw!)
%1% / selected line(s) only
all / all links
5 / save summary results in scalars
2 / minimum
ms98
lowy / scalar name and description
’lower y coordinate for line %1%’
/ don’t save line index
/ don’t save i-node
/ don’t save j-node
3 / maximum
ms99
uppy / scalar name and description
’upper y coordinate for line %1%’
/ don’t save line index
/ don’t save i-node
/ don’t save j-node
q
“/ ... plotting volumes of transit line %1%...
6.22 / now plot the selected transit line or lines
1 / transit volumes
%1% / selected line(s) only
1 / bars only
n / no color index
n / no node numbers
“?79=1
n / no base network
all / all links
y / window
1 / using coordinates
Jms96% %ms98% / lower left corner
«ms97% %ms99% / upper right corner
“:end
“0=6 / enable dialog output

H. Spiess: EMME/2 Macro Tutorial 39

T4:

Exercise 8.1b: (File: plotlin2.mac)
01: “o=7

02: ~/ Plotlin2: Plot the transit volumes of the lines given in parameters
03: 7/ by using an ‘‘optimal’’ window which is computed first
04: =/ (using floating point registers)

05: "?v<706 / test for Release 8 sice macro uses floating point registers
06: “+|~/ This macro requires EMME/2 Release 8 or later!|“$end

07: ~/ ... computing optimal window for transit line %1%...

08: ~?7i&32768 / if switch 15 (dialog/macro echo mode) is ON

09: "0=8 / enable dialog output and set single stepping mode

10: 2.41 / use network calculator to compute min/max coordinates

11: 1 / network calculation for x coordinate

12: n / no results saved

13: "+|7g1=-9999999 | “g2=9999999 | “g3=-9999999| “g4=9999999 / initialize registers
14: ’0*hdw+’ / dummy term to force a segment expression

15: put((put(get(1l).max.xi.max.xj)-put(get(2) .min.xi.min.xj))

16: .max.(put(get(3).max.yi.max.yj)-put(get(4).min.yi.min.yj)))

17:

18: %1% / selected line(s) only

19:

20: all / all links

21: 5 / no report, no punch

22: “+|"r1=Yglh| "r2=Yg2%| "r3=Y%g3h| "r4=Ygd) / copy to floating point registers fN
23: ~7g5=0

24: “+|”/ Empty window - check line names! |ql|~$end

26: “gbx.03 / compute border increment

26: “+|"ri+)gb%| "r2-%gb%| "r3+%gbh| "r4-Y%gbk / adjust for border

27: q

28: "/ ... plotting volumes of transit line %1%...

29: 6.22 / now plot the selected transit line or lines

30: 1 / transit volumes

31: %1% / selected line(s) only

32:

33: 1 / bars only

34: n / no color index

35: n / no node numbers

36: "7g=1

37: n / no base network

38: all / all links

39: y / window

40: 1 / using coordinates

41: %r2) %r4) / lower right cormer

42: ‘hr1% %r3% / upper left corner

43: “:end

44: “0=6 / enable dialog output

45:

H. Spiess: EMME/2 Macro Tutorial 40

Exercise 8.2: (File: speedist.mac)
01: ~o=7 /#### COMPUTE DISTRIBUTION OF VEHICLE KILOMETERS BY 5KM/H SPEED CLASSES
02: “?7!m=000 / test for correct starting module

03: "+|7/This macro must be started from the main menu!|~$end

04: ~?v<706 / test for correct software version, since new features are used
05: “+|~/This macro requires EMME/2 Release 8 Beta or later!|~“$end

06: ~7!f%&1024/ test if current scenario has a valid auto assignment

07: “+|”/Scenario s’ does not have an auto assignment!|”$end

08: 2.41 / compute distribution of vehicle kilometers by 5km/h speed classes
09: 1 / network calculation

10: n / without saving the result

11: put(volauxlen+get (puti((60*len/timau)/5+1)))

12:

13: “+|not volau=0| / for all links

14: 5 / nor report, no batch output

16: /-

16: ~/Vehicle kilometers by speed:

17: /===

18: "x=1 / initiaize index

19: “ri1=0 / initialize lower limit of interval

20: "r3=0 / initialize grand total

21: ":next

22: “r2=jril), / compute upper limit of interval

23: "r2+5

24: “7gx>0 / only output non-empty intervals

25: ~/%r1_3% - %r2_3% km/h: %gx.2_12)

26: “ri=jr2), / prepare for next interval

27: “r3+jgx) / update grand total

28: “x+1 / increment index

29: “7x<250 / and loop

30: “$next

31: 7/

32: 7/ Total: %r3.2_12j%

33: 7/

34: q

35: ":end

36: ~0=6

37: “7m=000

38:

Exercise 8.3: (File: mlookup.mac)
01: “o=7

02: ~/*xkxkxkx*kx MLOOKUP - Apply a lookup table to a matrix skskskksksoksokskkskskkok
03: ~/

04: ~/calling sequence: mlookup <upq> <rpg>

H. Spiess: EMME/2 Macro Tutorial

05: ~"/where: <upg> input matrix (or expression)
06: ~/ <rpq> result matrix identifier

07: =/

08: ~+|"x=Y0%|"?x<2| "$end

09: ~7v<706

10: “+|~/ This macro requires EMME/2 Release 8 or later!|~$end
11: ~+|~7i&32768|“0=8 / if switch 15 is set, go into single stepping mode

12: 3.21 / call matrix calculator
13: “ri=2 / <- interval size

14: ~: start of lookup table

15: "g1=.0496

16: ~g2=.0591

17: ~g3=.1021

18: ~g4=.1791

19: “gb=.2505

20: ~g6=.3242

21: "g7=.4041

22: "g8=.4919

23: "g9=.5826

24: "g10=.6623

25: "gl1=.7265

26: "gl12=.7813

27: "g13=.8443

28: ~“g14=.8939

29: "g15=.9318

30: “g16=.9575

31: "gl7=.9856

32: "g18=.9916

33: "g19=.9952

34: ~g20=.9977

356: "g21=.9992

36: “g22=.9993

37: ~g23=.9997

38: "g24=.9999

39: ~g25=1.0000

40: “:end of lookup table

41: 1 / matrix calculation

42: ’y’> / save results in matrix %2J), (see exercise 2.1)
43: “+|%2%|y|lookup|’result of macro "mlookup %1%"’|~x=%kkhakhhh|~“?x=0]0]"7?x=1|n
44: get(int ((%1%)/%r1%+1) .max.1.min.25)

45:

46: / no constraint matrix

47: ’no’ / no submatrix

48: ~7q=2

49: 2 / send report to printer

50: q

51: ~/

52: “/Macro "mlookup %1% %2%" terminated normally.
53: “/calling sequence: mlookup <upq> <rpg>

54: “:end

H. Spiess: EMME/2 Macro Tutorial

D51 7/ ek sk ok ok ok e ok sk ok ke ok ok ok s sk ok e ook 3k s o sk ook K e ok ok e o ok o s sk ok s sk ok e o sk ok s sk ok e s sk ok ok sk ok o sk ke sk K e ok ok ok ok ok 3k ok
56: “0=6
b7:

42

